Search results for "transition radiation detector"

showing 10 items of 10 documents

Search for the exotic Θ+ resonance in the NOMAD experiment

2006

12 pages, 16 figures.-- PACS nrs.: 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev.-- ISI Article Identifier: 000243973100007.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ex/0612063.-- et al.

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Protonneutrino; nutrino oscillations; quarksElectromagnetic Calorimeter7. Clean energy01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsEngineering (miscellaneous)Charged currentPhysicsNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaTransition Radiation DetectorPositive-strangenessBaryonPhotoproductionHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentCharged Current Interactions
researchProduct

A study of the material in the ATLAS inner detector using secondary hadronic interactions

2011

The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.

PhotonPhysics::Instrumentation and Detectorsdetector modelling and simulations i (interaction of radiation with matter; interaction; large detector systems for particle and astroparticle physics; of photons with matter; interaction of hadrons with matter; etc); particle tracking detectors (solid-state detectors); si microstrip and pad detectors01 natural sciencesparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]of photons with matter interaction of hadrons with matter etc)InstrumentationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Detectors de radiacióMathematical PhysicsPhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)Large Hadron ColliderSettore FIS/01 - Fisica SperimentaleDetectorVERTEX DETECTORSSi microstrip and pad detectorsTransition radiation detectorinteraction of hadrons with matterExperimental uncertainty analysismedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)Física nuclearParticle Physics - Experimentof photons with matterParticle physicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Detector modelling and simulations I (interaction of radiation with matter interactionDetector modelling and simulations I (interaction of radiation with matterddc:500.2530Detector Modelling and SimulationsInteraction of photons with matterNuclear physicsAtlas (anatomy)0103 physical sciencesmedicineddc:610010306 general physicsetc)Astroparticle physicsParticle Tracking DetectorsScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsLarge Detector Systemsdetector modelling and simulations IFísicaCol·lisions (Física nuclear)Experimental High Energy PhysicsHigh Energy Physics::ExperimentSi Microstrip and Pad DetectorsLepton
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Combined performance studies for electrons at the 2004 ATLAS combined test-beam

2010

In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…

Physics::Instrumentation and DetectorsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Transition radiation detectorsElectronsddc:500.201 natural sciencesParticle identificationNuclear physicsCalorimetersAtlas (anatomy)Particle tracking detectors0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorCalorimetermedicine.anatomical_structureTransition radiationBeamlineHigh Energy Physics::ExperimentBeam (structure)
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct

The ATLAS Inner Detector commissioning and calibration

2010

The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and insitu calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energ…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsAstronomyTracking (particle physics)Modules7. Clean energy01 natural sciencesATLAS; calibrationHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Heavy IonsDetectors and Experimental TechniquesDetectors de radiacióPhysicsLarge Hadron ColliderDetectorSettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)ATLASAstrophysics and CosmologyTransition radiation detectormedicine.anatomical_structureIonization EnergyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCElementary ParticlesQuantum Field TheoryParticle physicsFOS: Physical sciencesCosmic rayddc:500.2HadronsSilicon Pixel Sensors530OpticsQuantum Field TheoriesAtlas (anatomy)0103 physical sciencesCalibrationmedicineddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Measurement Science and InstrumentationOptoelectronics010306 general physicsString TheoryEngineering (miscellaneous)ReadoutNuclear PhysicsATLAS detectorbusiness.industry010308 nuclear & particles physicsFísicaSemiconductor TrackerTransition radiationExperimental High Energy Physicsbusiness
researchProduct

Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC

2011

A search is made for massive highly ionising particles with lifetimes in excess of 100 ns, with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb-1 of pp collision data taken at √s = 7TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges 6e ≤ |q| ≤ 17e and masses 200 GeV ≤ m ≤ 1000 GeV are set in the range 1–12 pb for different hypotheses on the production mechanism.

Nuclear and High Energy PhysicsParticle physicsNew PhysicsCiências Naturais::Ciências FísicasPhysics::Instrumentation and DetectorsPhysics beyond the Standard Model:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesHigh-energy collider experiment; Long-lived particle; Highly ionising; New physicsHigh-energy collider experimentddc:500.253001 natural sciencesHigh Energy Physics - ExperimentNuclear physicslong-lived particle; high-energy collider experiment; new physics; highly ionisingHigh Energy Physics - Experiment (hep-ex)Atlas (anatomy)0103 physical sciencesMASSIVE CHARGED PARTICLESmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530High Energy PhysicsHighly ionisingNew physics010306 general physicsNuclear ExperimentPhysicsRange (particle radiation)Large Hadron ColliderScience & Technology010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorATLAS experimentDrell–Yan processFísicaATLASLong-lived particleTransition radiation detectormedicine.anatomical_structureExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentLHCParticle Physics - Experiment
researchProduct

Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

2011

The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which i…

PhotonCiências Naturais::Ciências Físicastransition radiation detectors ; calorimeters ; large detector systems for particle and astroparticle physics ; particle tracking detectors ; solid-state detectorsPhysics::Instrumentation and Detectors:Ciências Físicas [Ciências Naturais]Transition radiation detectorsddc:500.201 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsCalorimetersOpticsAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WaferDetectors and Experimental Techniques010306 general physicsInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsDetectorSettore FIS/01 - Fisica SperimentaleCalorimetermedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)High Energy Physics::ExperimentbusinessEnergy (signal processing)Beam (structure)
researchProduct

A large-area transition radiation detector

1990

Abstract The construction and the operation of a large-area transition radiation detector (TRD) for the NA31 experiment at CERN are described. The TRD incorporates several novel features for stabilizing the detector response. The density of the gas mixture (xenon+helium+methane) in the detection chambers is matched to the carbon dioxide gas in the surrounding radiators by tuning the helium concentration to avoid a hydrostatic pressure difference, which would deform the chamber walls. The chamber pressure is continuously regulated by computer control to maintain it to within 1 μbar of the radiator pressure. The gas gain of each of the four chambers is regulated to better than 0.2% by changin…

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsbusiness.industryHelium ionization detectorDetectorHydrostatic pressurechemistry.chemical_elementMethaneChamber pressureNuclear physicschemistry.chemical_compoundTransition radiation detectorXenonOpticschemistryDetectors and Experimental TechniquesbusinessInstrumentationHelium
researchProduct

Composition of Primary Cosmic-Ray Nuclei at High Energies

2008

The TRACER instrument (``Transition Radiation Array for Cosmic Energetic Radiation'') has been developed for direct measurements of the heavier primary cosmic-ray nuclei at high energies. The instrument had a successful long-duration balloon flight in Antarctica in 2003. The detector system and measurement process are described, details of the data analysis are discussed, and the individual energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe (nuclear charge Z=8 to 26) are presented. The large geometric factor of TRACER and the use of a transition radiation detector make it possible to determine the spectra up to energies in excess of 10$^{14}$ eV per particle. A power-law fit to…

PhysicsSpectral indexCOSMIC cancer databaseAstronomyAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsRadiationAstrophysicsSpectral lineEffective nuclear chargeTransition radiation detectorSpace and Planetary ScienceTRACERAtomic physics
researchProduct